உங்களைச் சுற்றியுள்ள பொருட்களை உற்றுப்பாருங்கள். அவை எப்போது உருவாகியிருக்கும்? ஐந்து ஆண்டுகளுக்கு முன்? பத்தாண்டுகள்? நூறு? எப்படியும் எதோ ஒரு குறிப்பிட்ட ஆண்டில் தான் அந்தப் பொருள் உருவாகியிருக்க வேண்டும். சரி, அப்படியென்றால் இந்த உலகம்? பிரபஞ்சம்? அதற்கும் இதே பதில்தான். பிரபஞ்ச உருவாக்கத்தின் மிகப்பெரிய புதிர் ஒன்று இருக்கிறது. அதுதான் நியூட்ரினோ உருவாக்கம். இதனைப் புரிந்துகொள்ள வேண்டுமென்றால் இயற்பியலின் சில பக்கங்ககளைப் புரட்டவேண்டும். வாருங்கள்.

பிரபஞ்ச உருவாக்கம்
பெருவெடிப்பின் மூலம் இந்தப் பிரபஞ்சம் உருவானது என்று நாம் கேள்விப்பட்டிருப்போம். வெடிப்பிற்குப் பின்னால் நேர் (Matter) மற்றும் எதிர் தன்மை (Anti Matter) கொண்ட துகள்கள் தோன்றின. நிறை, பயணிக்கும் வேகம் என அனைத்து குணங்களும் இந்த இரண்டு துகள்களிலும் ஒரே மாதிரியாக இருக்கும். ஆனால் ஒன்றை ஒன்று நெருங்குமேயானால் மறுபடியும் பெருவெடிப்பு நிகழ்ந்துவிடும். குழப்புகிறதா? சரி, இப்படி சொல்லுவோம்.
பிரபஞ்சம் உருவாக Matter மற்றும் Anti Matter ன் எண்ணிக்கை சம அளவில் இருக்கவேண்டும். அப்படி இருந்தால் ஒன்ற ஒன்று மோதி அழித்துவிடும். பின்னர் எப்படி இந்த பிரபஞ்சம் உருவாகியிருக்க முடியும். அங்குதான் நியூட்ரினோ துகளின் என்ட்ரி. இந்தத் துகள் மட்டும் இல்லையென்றால் மொத்த பிரபஞ்சமும் “டமார்” தான். ஆகவே மதிப்பிற்குரிய நியூட்ரினோ பற்றி கொஞ்சம் பார்த்துவிடலாம்.
நியூட்ரினோ
19 ஆம் நூற்றாண்டின் துவக்கத்தில் அறிவியாலார்களின் மிகச்சிறந்த கண்டுபிடிப்பு பீட்டா டீகே (beta decay) ஆகும். அதாவது ஒரு அணுவிலிருந்து அனைத்து எலெக்ட்ரான்களும் குறிபிட்ட இடைவெளியில் வெளியேறும் நிகழ்வு. இதைத்தான் பீட்டா டீகே என்கிறார்கள். அப்போது நியூட்ரினோ துகளும் வெளியேறும். பொதுவாக இதற்கு எந்த மின்சுமையும் இருப்பதில்லை. அதன் எடையைப் போலவே. இவை ஒளியின் வேகத்தில் பயணிக்கக்கூடியவை. பிரபஞ்சத்தின் நான்கு அடிப்படை விசைகளில் இரண்டினால் நியூட்ரினோ பாதிக்கப்படும். அவற்றுள் முதன்மையானது புவிஈர்ப்பு விசை. அடுத்தது, அணுக்கரு விசை.
ஆச்சரியம்
துவக்கத்தில் நியூட்ரினோ மூன்று வகையான வடிவங்கள் மற்றும் வகைகளைக் கொண்டதாகத் தான் எண்ணிக்கொண்டு இருந்தார்கள் ஆராய்ச்சியாளர்கள். ஆனால் Chicago வின் Fermi National Accelerator Laboratory (Fermilab) ல் நடைபெற்ற தொடர் ஆராய்ச்சியின் மூலம் ஸ்டெரைல் எனப்படும் புதுவகை நியூட்ரினோ (sterile neutrino) இருப்பது கண்டுபிடிக்கப்பட்டிருக்கிறது. சாதரணமாக அனைவருக்கும் தெரிந்தது எலெக்ட்ரான் நியூட்ரினோ (electron neutrino) மட்டுமே. மற்றவை மியூவான் நியூட்ரினோ (muon neutrino) மற்றும் டவ் நியூட்ரினோ (tau neutrino).

இவை எங்கு, எப்படி, எதனால் தங்களது வடிவத்தை மாற்றிக்கொள்கின்றன என்பது பில்லியன் டாலர் கேள்வி. ஒருவேளை அதற்கு விடை தெரிந்தால் பிரபஞ்சம் எப்படி உருவானது? உயிரினங்களின் வளர்ச்சி, பிரபஞ்ச அழிவுக்காலம் என அனைத்திற்கும் விடை கண்டுபிடித்துவிடலாம். எப்படி என்கிறீர்களா?
Matter மற்றும் Anti Matter சரிவிகிதத்தில் இருக்கும்போது பிரபஞ்சம் வெடிக்கும், அது நியூட்ரினோவால் நிகழவில்லை என்று பார்த்தோம் அல்லவா? அதாவது Matter க்கும் Anti Matter க்கும் இடையில் எண்ணிக்கையில் வேறுபாடு நடந்திருக்கிறது. இயற்பியல் விதிப்படி இதற்கு வாய்ப்பில்லை. ஆனால் ஆச்சர்யவசமாக Matter ன் எண்ணிக்கை ஏதோ காரணத்தினால் அதிகரித்திருக்கிறது. நியூட்ரினோவின் நிலைமாறும் தன்மையில் தான் இந்த ரகசியம் பொதிந்திருக்கிறது.
ஏன் ஆராய்ச்சி தேவை?
எண்ணிக்கையில் Matter ஐ அதிகரித்தது என்றவுடன் பில்லியன் மில்லியன் என்று நினைத்துக்கொள்ள வேண்டாம். ஒரு பில்லியன் Matter ல் ஒன்றே ஒன்றைத்தான் நியூட்ரினோ அதிகரித்திருக்கிறது. அந்த ஒன்றில் இருந்துதான் பிரபஞ்சம், உலகம், நீங்கள், நான், நீங்கள் படிக்கும் போன் என அனைத்துமே உருவாகியிருக்கிறது. எனவே நம் வரலாற்றை ஆராய நாம் முதலில் தெரிந்துகொள்ளவேண்டிய விஷயம் இந்த நியூட்ரினோ பற்றித்தான். எப்படித் தொடங்கியது என்று தெரிந்தால் தானே எங்கு முடியும் எனத் தெரிந்துகொள்ள முடியும்?

இதில் மிகப்பெரிய சிக்கல் என்னவென்றால் நியூட்ரினோவைப் பிடிப்பது. இத்தனைக்கும் சூரியன் மிகப்பெரிய நியூட்ரினோ மூலம். இதை நீங்கள் படித்துக்கொண்டிருக்கும் போது உங்களது உடம்பில் 1௦௦ பில்லியன் நியூட்ரினோக்கள் ஊடுருவிச் சென்றுகொண்டிருக்கும். ஆனாலும் நம்மால் அத்தனை எளிதில் அவற்றை பிரித்தெடுக்க முடியாது. ஒளியின் வேகத்தை விட அதிகமாகப் பயணிக்கும் இதனை சேகரிக்க பலகோடி செலவில் சிக்கலான தொழில்நுட்பங்கள் தேவைப்படும். இருப்பினும் எதிர்கால வானியல் ஆராய்ச்சியின் மையமாக இருக்கப்போவது இந்த நியூட்ரினோ தான் என்பது எள்ளளவும் மறுக்கமுடியாத உண்மை.